OH49E Series

LINEAR HALL-EFFECT IC

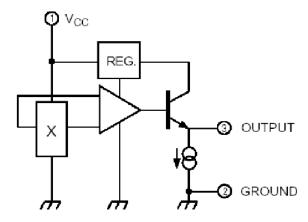
Order information

Туре	OH49E-S	Operating	-20∼100℃	Package	SOT23	3000pcs/reel	
Туре	OH49E	Temperature	-20∼100℃	Package	TO-92S	1000pcs/bag	

General Description

The OH49E is a small, versatile linear Hall-effect device that is operated by the magnetic field from a permanent magnet or an electromagnet. The output voltage is set by the supply voltage and varies in proportion to the strength of the magnetic field.

The integrated circuitry features low noise output, which makes it unnecessary to use external filtering. It also includes precision resistors to provide increased temperature stability and accuracy. The operating temperature range of these linear Hall sensors is -20° to 100° , appropriate for commercial, consumer and industrial applications.


Features

- · Miniature Construction
- · Power Consumption of 4.2mA at VCC=5V for Energy Efficiency
- · Single Current Sourcing Output
- · Linear Output for Circuit Design Flexibility
- · Low Noise Output Virtually Eliminates the Need for Filtering
- · A Stable and Accurate Output
- · Temperature Range of -20 °C to 100 °C
- · Responds to Either Positive or Negative Gauss

Typical applications

- · Current Sensing
- · Motor Control
- · Position Sensing
- · Magnetic Code Reading
- · Ferrous Metal Detector
- · Vibration Sensing
- · Liquid Level Sensing
- · Weight Sensing

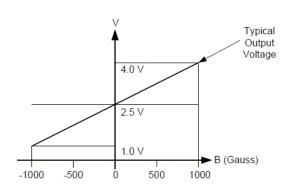
Functional Block Diagram

OH49E Series

LINEAR HALL-EFFECT IC

Absolute Maximum Rating

Supply Voltage V_{CC} 10.V Operating Temperature Range T_A -20 \sim 100°C

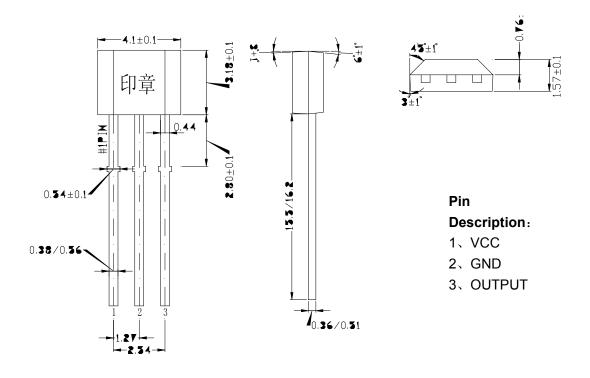

Storage Temperature Range T_S -50 \sim 150 $^{\circ}$ C

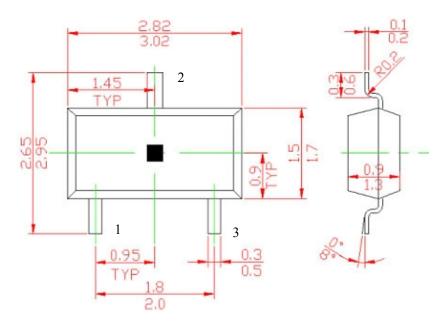
Electrical & Magnetic Characteristics (T_A=25°C,Vcc=5.0V)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Supply Voltage	VCC		2.3	5	10	V
Supply Current	Icc			4.2		mA
Quiescent Output Voltage	VNULL	@ B=0GS	2.35	2.5	2.65	V
Output Voltage Sensitivity	S	B= ±100GS	1.8	2.0	2.2	mV/GS
Output Voltage (high)	VH	B=+1200GS	-	-	4.2	V
Output Voltage(low)	VL	B=-1200GS	0.8	-	-	V
Output Resistor	Ro			40	100	Ω
Output Noise		BW=10Hz to 10kHz		90		μV

Transfer Characteristics (VCC=5V)

When there is no outside magnetic field (B=0GS), the quiescent output voltage is one-half the supply voltage in general. If a south magnetic pole approaches to the front face (the side with marking ID) of the Hall effect sensor, the circuit will drive the output voltage higher. Contrary, a north magnetic pole will drive the output voltage lower. The variations of voltage level up or down are symmetrical. Greatest magnetic sensitivity is




obtained with a supply voltage of 5V, but at the cost of increased supply current and a slight loss of output symmetry. So, it is not recommended to work in such condition unless the output voltage magnitude is a main issue. The output signal can be capacitively coupled to an amplifier for boosting further if the changing frequency of the magnetic field is high.

OH49E Series

LINEAR HALL-EFFECT IC

Package (unit :mm)

